Самое тяжелое вещество во вселенной. Самое твёрдое вещество в мире: избавляемся от ложных истин Какое вещество самое прочное

Под определением прочность подразумевается способность материалов не поддаваться разрушению в результате воздействия внешних сил и факторов, приводящих к внутреннему напряжению. У материалов, обладающих высокой прочностью, широкая область применения. В природе существую не только твердые металлы и прочные породы древесины, но и искусственно созданные высокопрочные материалы. Многие люди уверены в том, что самый прочный материал в мире – это алмаз, но так ли это в действительности?

Общая информация:

    Дата открытия – начало 60-х годов;

    Первооткрыватели – Сладков, Кудрявцев, Коршак, Касаткин;

    Плотность – 1,9-2 г/см3.

В недавнем времени научные сотрудники из Австрии завершили работу по налаживанию устойчивого изготовления карбина, являющегося аллотропной формой углерода на основе sp-гибридизации углеродных атомов. Показатели его прочности в 40 раз превзошли показатели алмаза. Информация об этом была размещена в одном из номеров научного печатного периодического издания “Nature Materials”.

После тщательного изучения его свойств, ученые пояснили, что по прочности он не сравнится ни с одним ранее открытым и изученным материалом. Тем не менее в процессе производства возникли значительные трудности: структура карбина образована из атомов углерода, собранных в длинные цепочки, в результате чего он начинает разрушаться в процессе изготовления.

Для устранения выявленной загвоздки, физики из общественного университета в Вене создали специальное защитное покрытие, в котором и синтезировался карбин. В качестве защитного покрытия использовались слои графена, положенные друг на друга и свернутые в «термос». Пока физики прилагали все усилия для достижения стабильных форм, они выяснили, на электрические свойства материала влияет протяженность атомной цепочки.

Извлекать карбин из защитного покрытия без повреждений исследователи так и не научились, поэтому изучение нового материала продолжается, руководствуются ученые только лишь относительной устойчивостью атомных цепочек.

Карбин – малоизученная аллотропная модификация углерода, первооткрывателями которой стали советские ученые-химики: А.М.Сладков, Ю.П.Кудрявцев, В.В.Коршак и В.И.Касаточкин. Информация о результате проведения опыта с подробным описанием открытия материала в 1967 году появилась на страницах одного из крупнейших научных журналов – «Доклады академии наук СССР». Спустя 15 лет в американском научном журнале «Science» появилась статья, поставившая под сомнение результаты, которые получили советские химики. Выяснилось, что присвоенные малоизученной аллотропной модификации углерода сигналы могли быть связаны с присутствием примесей силикатов. С годами подобные сигналы обнаружили в межзвездном пространстве.

Общая информация:

    Первооткрыватели – Гейм, Новоселов;

    Теплопроводность – 1 ТПа.

Графен представляет собой двумерную аллотропную модификацию углерода, в которой атомы объединены в гексагональную решетку. Несмотря на высокую прочность графена, толщина его слоя составляет 1 атом.

Первооткрывателями материала стали русские физики, Андрей Гейм и Константин Новоселов. В своей стране ученые не заручились финансовой поддержкой и приняли решение о переезде в Нидерланды и Соединенное Королевство Великобритании и Северной Ирландии. В 2010 году ученым присудили Нобелевскую премию.

На листе графена, площадь которого равняется одному квадратному метру, а толщина – одному атому, свободно держатся предметы массой до четырех килограмм. Помимо того, что графен высокопрочный материал, он еще и очень гибкий. Из материала с такими характеристиками в будущем можно будет плести нити и другие веревочные структуры, не уступающие в прочности толстому стальному канату. При определенных условиях материал, открытый русскими физиками, может справляться с повреждениями в кристаллической структуре.

Общая информация:

    Год открытия – 1967;

    Цвет – коричнево-желтый;

    Измеренная плотность – 3,2 г/см3;

    Твердость – 7-8 единиц по шкале Мооса.

Структура лонсдейлита, обнаруженного в воронке метеорита, схожа с алмазом, оба материала – это аллотропные модификации углерода. Вероятнее всего, в результате взрыва графит, являющийся одним из компонентов метеорита, и превратился в лонсдейлит. На момент обнаружения материала ученые не отметили высоких показателей твердости, тем не менее, было доказано, если в нем не будет примесей, то он ничем не будет уступать высокой твердости алмаза.

Общая информация о нитриде бора:

    Плотность – 2,18 г/см3;

    Температура плавления – 2973 градуса по Цельсию;

    Кристаллическая структура – гексагональная решетка;

    Теплопроводность – 400 Вт/(м×К);

    Твердость – меньше 10 единиц по шкале Мооса.

Основные отличия вюрцитного нитрида бора, представляющего собой соединение бора с азотом, заключаются в термической и химической стойкости и огнеупорности. Материал может быть разной кристаллической формы. К примеру, графитная самая мягкая, но при этом стабильная, именно она используется в косметологии. Сфалеритная структура в кристаллической решетке подобна алмазам, но уступает по показателям мягкости, обладая при этом лучшей химической и термической стойкостью. Такие свойства вюрцитного нитрида бора позволяют использовать его в оборудовании для высокотемпературных процессов.

Общая информация:

    Твердость – 1000 Гн/м2;

    Прочность – 4 Гн/м2;

    Год открытия металлического стекла – 1960.

Металлическое стекло – материал с высоким показателем твердости, неупорядоченной структурой на атомарном уровне. Основное отличие структуры металлического стекла от обычного – высокая электропроводность. Получают такие материалы в результате твердотельной реакции, быстрого охлаждения или ионного облучения. Ученые научились изобретать аморфные металлы, показатели прочности которых в 3 раза больше, чем у стальных сплавов.

Общая информация:

    Предел упругости – 1500 Мпа;

    KCU – 0,4-0,6 МДж/м2.

Общая информация:

    Ударная вязкость КСТ – 0,25-0,3 МДж/м2;

    Предел упругости – 1500 Мпа;

    KCU – 0,4-0,6 МДж/м2.

Мартенситно-стареющие стали – сплавы железа, обладающие высокой прочностью при ударах, при этом не теряющие тягучести. Несмотря на такие характеристики, материал не держит режущую кромку. Полученные путем термообработки сплавы – это низкоуглеродистые вещества, берущие прочность от интерметаллидов. В состав сплава входит никель, кобальт и другие карбидообразующие элементы. Данная разновидность высокопрочной, высоколегированной стали легко поддается обработке, связано это с небольшим содержанием в ее составе углерода. Материал с такими характеристиками нашел применение в аэрокосмической области, его используют в качестве покрытия ракетных корпусов.

Осмий

Общая информация:

    Год открытия – 1803;

    Структура решетки – гексагональная;

    Теплопроводность – (300 К) (87,6) Вт/(м×К);

    Температура плавления – 3306 К.

Блестящий металл голубовато-белого цвета, обладающий высокой прочностью, принадлежит к платиноидам. Осмий, обладая высокой атомной плотностью, исключительной тугоплавкостью, хрупкостью, высокой прочностью, твердостью и стойкостью к механическим воздействиям и агрессивному влиянию окружающей среды, широко применяется в хирургии, измерительной технике, химической отрасли, электронной микроскопии, ракетной технике и электронной аппаратуре.

Общая информация:

    Плотность – 1,3-2,1 т/м3;

    Прочность углеродного волокна – 0,5-1 ГПа;

    Модуль упругости углеродного высокопрочного волокна – 215 Гпа.

Углерод-углеродные композиты – материалы, которые состоят из углеродной матрицы, а она в свою очередь армирована углеродными волокнами. Основные характеристики композитов – высокая прочность, гибкость и ударная вязкость. Структура композиционных материалов может быть как однонаправленной, так и трехмерной. Благодаря таким качествам композиты широко используются в различных областях, включая и аэрокосмическую отрасль.

Общая информация:

    Официальный год открытия паука – 2010;

>Ударная вязкость паутины – 350 МДж/м3.

Впервые паука, плетущего сети огромных размеров, обнаружили неподалеку от Африки, на островном государстве Мадагаскар. Официально этот вид пауков открыли в 2010 году. Ученых, прежде всего, заинтересовали паутины, сплетенные членистоногим. Диаметр кругов на несущей нити может доходить до двух метров. Показатели прочности паутины Дарвина превышают показатели прочности синтетического кевлара, используемого в авиационной и автомобильной промышленности.

Общая информация:

    Теплопроводность – 900-2300 Вт/(м×К);

    Температура плавления при давлении 11 Гпа – 3700-4000 градусов по Цельсию;

    Плотность – 3,47-3,55 г/см3;

    Показатель преломления – 2,417-2,419.

Алмаз в переводе с древнегреческого означает «несокрушимый», однако ученые открыли еще 9 элементов, превосходящих его по показателям прочности. Несмотря на бесконечное существование алмаза в обычной среде, при высокой температуре и инертном газе он может превратиться в графит. Алмаз – эталонный элемент (по шкале Мооса), обладающий одним из самых высоких показателей твердости. Для него, как и для многих драгоценных камней, характерна люминесценция, позволяющая блестеть при попадании на него солнечных лучей.

Осмий на сегодня определён как самое тяжёлое вещество на планете. Всего один кубический сантиметр этого вещества весит 22.6 грамма. Он был открыт в 1804 году английским химиком Смитсоном Теннантом, при растворении золота в После в пробирке остался осадок. Это произошло из-за особенности осмия, он нерастворим в щелочах и кислотах.

Самый тяжёлый элемент на планете

Представляет собой голубовато-белый металлический порошок. В природе встречается в виде семи изотопов, шесть из них стабильны и один неустойчив. По плотности немного превосходит иридий, который имеет плотность 22,4 грамма на кубический сантиметр. Из обнаруженных на сегодня материалов, самое тяжёлое вещество в мире - это осмий.

Он относится к группе таких как лантан, иттрий, скандий и других лантаноидов.

Дороже золота и алмазов

Добывается его очень мало, порядка десяти тысяч килограмм в год. Даже в наиболее большом источнике осмия, Джезказганском месторождении, содержится порядка трёх десятимиллионных долей. Биржевая стоимость редкого металла в мире достигает порядка 200 тысяч долларов за один грамм. При этом максимальная чистота элемента в процессе очистки около семидесяти процентов.

Хотя в российских лабораториях удалось получить чистоту 90,4 процента, но количество металла не превышало нескольких миллиграмм.

Плотность материи за пределами планеты Земля

Осмий, бесспорно, является лидером самых тяжёлых элементов нашей планеты. Но если мы обратим свой взор в космос, то нашему вниманию откроется множество веществ более тяжёлых, чем наш «король» тяжёлых элементов.

Дело в том, что во Вселенной существуют условия несколько другие, чем на Земле. Гравитация ряда настолько велика, что вещество неимоверно уплотняется.

Если рассмотреть структуру атома, то обнаружится, что расстояния в межатомном мире чем-то напоминают видимый нами космос. Где планеты, звезды и прочие находятся на достаточно большой дистанции. Остальное же занимает пустота. Именно такую структуру имеют атомы, и при сильной гравитации эта дистанция достаточно сильно уменьшается. Вплоть до «вдавливания» одних элементарных частиц в другие.

Нейтронные звезды - сверхплотные объекты космоса

В поисках за пределами нашей Земли мы сможем обнаружить самое тяжёлое вещество в космосе на нейтронных звёздах.

Это достаточно уникальные космические обитатели, один из возможных типов эволюции звёзд. Диаметр таких объектов составляет от 10 до 200 километров, при массе равной нашему Солнцу или в 2-3 раза больше.

Это космическое тело в основном состоит из нейтронной сердцевины, которая состоит из текучих нейтронов. Хотя по некоторым предположениям учёных она должна находиться в твёрдом состоянии, достоверной информации на сегодня не существует. Однако известно, что именно нейтронные звезды, достигая своего передела сжатия, впоследствии превращаются в с колоссальным выбросом энергии, порядка 10 43 -10 45 джоулей.

Плотность такой звезды сравнима, к примеру, с весом горы Эверест, помещённой в спичечный коробок. Это сотни миллиардов тонн в одном кубическом миллиметре. К примеру, чтобы стало более понятно, насколько велика плотность вещества, возьмём нашу планету с её массой 5,9×1024 кг и «превратим» в нейтронную звезду.

В результате, чтобы сравнялась с плотностью нейтронной звезды, её нужно уменьшить до размеров обычного яблока, диаметром 7-10 сантиметров. Плотность уникальных звёздных объектов увеличивается с перемещением к центру.

Слои и плотность вещества

Наружный слой звезды представлен собой в виде магнитосферы. Непосредственно под ней плотность вещества уже достигает порядка одной тонны на сантиметр кубический. Учитывая наши знания о Земле, на данный момент, это самое тяжёлое вещество из обнаруженных элементов. Но не спешите с выводами.

Продолжим наши исследования уникальных звёзд. Их называют также пульсарами, из-за высокой скорости вращения вокруг своей оси. Этот показатель у различных объектов колеблется от нескольких десятков до сотен оборотов в секунду.

Проследуем далее в изучении сверхплотных космических тел. Затем следует слой, который имеет характеристики металла, но, скорее всего, он похож по поведению и структуре. Кристаллы намного меньше, чем мы видим в кристаллической решётке Земных веществ. Чтобы выстроить линию из кристаллов в 1 сантиметр, понадобится выложить более 10 миллиардов элементов. Плотность в этом слое в один миллион раз выше, чем в наружном. Это не самое тяжёлое вещество звезды. Далее следует слой, богатый нейтронами, плотность которого в тысячу раз превышает предыдущий.

Ядро нейтронной звезды и его плотность

Ниже находится ядро, именно здесь плотность достигает своего максимума - в два раза выше, чем вышележащий слой. Вещество ядра небесного тела состоит из всех известных физике элементарных частиц. На этом мы достигли конца путешествия к ядру звезды в поисках самого тяжёлого вещества в космосе.

Миссия в поисках уникальных по плотности веществ во Вселенной, казалось бы, завершена. Но космос полон загадок и неоткрытых явлений, звёзд, фактов и закономерностей.

Чёрные дыры во Вселенной

Следует обратить внимание, на то, что сегодня уже открыто. Это чёрные дыры. Возможно, именно эти загадочные объекты могут быть претендентами на то, что самое тяжёлое вещество во Вселенной - их составляющая. Обратите внимание, что гравитация чёрных дыр настолько велика, что свет не может её покинуть.

По предположениям учёных, вещество, затянутое в область пространства времени, уплотняется настолько, что пространства между элементарными частицами не остаётся.

К сожалению, за горизонтом событий (так называется граница, где свет и любой объект, под действием сил гравитации, не может покинуть чёрную дыру) следуют наши догадки и косвенные предположения, основанные на выбросах потоков частиц.

Ряд учёных предполагают, что за горизонтом событий смешиваются пространство и время. Существует мнение, что они могут являться «проходом» в другую Вселенную. Возможно, это соответствует истине, хотя вполне возможно, что за этими пределами открывается другое пространство с совершенно новыми законами. Область, где время поменяется «местом» с пространством. Местонахождение будущего и прошлого определяется всего лишь выбором следования. Подобно нашему выбору идти направо или налево.

Потенциально допустимо, что во Вселенной существуют цивилизации, которые освоили путешествия во времени через чёрные дыры. Возможно, в будущем люди с планеты Земля откроют тайну путешествий сквозь время.

Американским исследователям из Индианского университета в Блумингтоне удалось определись субстанцию, которая может оказаться самой прочной во Вселенной. Обнаружили это вещество в нейтронных звездах. Из-за специфической формы исследователи назвали его «ядерной пастой».

По теории ученных, этот материал образуется примерно на километр ниже поверхности нейтронной звезды: атомные ядра сжимаются так близко, что сливаются в сгустки вещества, плотную смесь нейтронов и протонов. Обычно они имеют форму капель, трубок или листов. Еще глубже в нейтронной звезде ядерная материя полностью берет верх, после чего образуется огромное атомное ядро.

В процессе компьютерного моделирования специалисты оценили силу, которую необходимо затратить для растягивания «ядерной пасты». Оказалось, что это вещество прочнее любого другого известного вещества во Вселенной. Физики все еще стремятся найти реальные доказательства существования ядерной пасты. Нейтронные звезды имеют тенденцию вращаться очень быстро, и, как следствие, могут испускать рябь в пространстве - гравитационные волны, которую мешают изучать материалы, из которых состоят звезды.

Одним из способов, которым ученые руководствуются - это опора исследования на внутренние структуры звезд, которые могут поддерживать существование гор на поверхности этих небесных тел. Из-за сильной гравитации высота гор обычно не больше нескольких сантиметров, однако «ядерная паста» может способствовать появлению более крупных неровностей высотой несколько десятков сантиметров.

Карта мира для нас дело привычное – еще со школы, знаем все о климате, делении на ареалы и расположении той или иной страны. Но недавно британские ученые из Плимутского университета сделали открытие, которое по сути заставит переписать учебники.

Эталоном твердости всегда считался алмаз (сейчас ведутся споры по поводу этого утверждения). То есть, твердость всех материалов сравнивается с алмазом. Но некоторые природные материалы показывают твердость вполне сопоставимую с алмазом. В нашей подборке мы покажем самые твердые материалы на Земле.

Субоксид бора


Это соединение обладает высокой прочностью, но материал хрупкий по причине низкой ударной вязкости. В качестве абразива применяют композиционный материал на основе субоксида бора. Такой процесс проводится с целью повышения показателей ударной вязкости вещества.

Диборид рения


Это очень необычный материал. Если не оказывать на него никакой нагрузки, диборид рения показывает свойства сверхпрочного материала. Если же какая-то нагрузка на него есть, его прочность существенно снижается. В связи с этими его свойствами ученые всего мира до сих пор не могут прийти к общему мнению, стоит ли считать его сверхтвердым материалом.
У этого сплава практически отсутствует такое понятие, как трение скольжения. Это суперкачество могло бы пригодиться в производстве механизмов, ведь тогда не нужна была бы смазка. Но этот твердый материал очень дорогой и из-за этого пока не используется широко в производственных целях.

Бор-углерод-кремний


Это соединение невероятно жаростойко и не восприимчиво к химическим реагентам.

Карбид бора


Это вещество открыли еще три века назад, и с тех пор он применяется во многих производственных процессах. С его помощью обрабатывают сплавы металлов, делают химическую лабораторную посуду. Даже энергетика и электроника не обходится без B₄C. В производстве пластин для бронежилетов также используется этот твердый материал. А если к нему добавить ионы аргона, его твердость станет еще выше.
Это относительно новое соединение, синтезированное химиками.
Этот материал также нашел свое применение для обработки сплавов различных металлов, а его показатели твердости приближены к показателям алмаза.

Вюртцитный нитрид бора


Структура кристаллической решетки этого материала имеет необычную форму, что позволяет этому веществу лидировать в рейтинге твердых веществ. При увеличении нагрузки его показатели твердости увеличиваются почти в 2 раза.
Этот природный материал нашли в воронке от упавшего метеорита, по своей структуре он схож с алмазом, но особой твердости в нем не обнаружили. Ученые доказали, что лишившись различных примесей, этот материал превзойдет алмаз по твердости.
Самый твердый в мире материал, способный даже на алмазе оставить царапины.